SOLVING CUBIC EQUATIONS

A cubic expression is an expression of the form $a x^{3}+b x^{2}+c x+d$. The following are all examples of expressions we will be working with:

$$
2 x^{3}-16, \quad x^{3}-2 x^{2}-3 x, x^{3}+4 x^{2}-16,2 x^{3}+x-3 .
$$

Remember that some quadratic expressions can be factorised into two linear factors:
e.g. $\quad \underset{\text { Quadratic }}{2 x^{2}-3 x+1}=\underset{\text { Linear Linear }}{(2 x-1)(x-1)}$

Now, a cubic expression may be factorised into
(i) a linear factor and a quadratic factor or (ii) three linear factors. For example, you can easily verify, by multiplying out the right hand side that:

$$
\begin{equation*}
\left.x^{3}-8=\underset{\text { Linear }}{(x-2)\left(x^{2}+2 x+4\right)} \quad \text { Quadratic }\right) \tag{i}
\end{equation*}
$$

(ii) $4 x^{3}-4 x^{2}-x+1=\underset{\text { Linear Linear Linear }}{(x-1)(2 x-1)(2 x+1)}$

There are three types of factorisation methods we will consider:

- Common factor
- Grouping terms
- Factor theorem

Type 1 - Common factor

In this type there would be no constant term.

Example

Solution

Solution

$$
\begin{aligned}
& x\left(x^{2}+5 x-14\right)=0 \\
& \quad \therefore x(x+7)(x-2)=0 \\
& \quad \therefore x=0, x=2, x=-7
\end{aligned}
$$

Type 2-Grouping terms

With this type, we must have all four terms of the cubic expression. We then pair terms with a common factor and see if a common bracket emerges.

Example 2

Solve for $x: \quad x^{3}+2 x^{2}-9 x-18=0$

Solution:

$$
\begin{aligned}
& \left(x^{3}+2 x^{2}\right)-(9 x+18)=0 \\
& \therefore x^{2}(x+2)-9(x+2)=0
\end{aligned}
$$

$\therefore(x+2)\left(x^{2}-9\right)=0$
$\therefore(x+2)(x-3)(x+3)=0$
$\therefore x=-2, x=3, x=-3$

Type 3 - Using the factor theorem

N.B. If $(x-a)$ is a factor of the cubic expression, then $f(a)=0$.

So, we substitute in values of $x= \pm 1, \pm 2 \ldots$ etc until we find a value which makes the expression equal to 0 .

Example 3

Solve for $x: x^{3}-5 x+2=0$

Solution

Solution

Try $x=1: \quad 1^{3}-5(1)+2=-2$
Try $x=-1: \quad(-1)^{3}-5(-1)+2=6$
Try $x=2: \quad 2^{3}-5(2)+2=0 \quad \therefore(x-2)$ is a factor
$\therefore(x-2)$ (quadratic) $=x^{3}-5 x+2$
$(x-2)\left(x^{2}+k x-1\right)=x^{3}-5 x+2$ by inspection.
Compare x terms on LHS and RHS: $\quad-5 x=-x-2 k x$
$\therefore-5=-1-2 k$
$\therefore k=2$
$\therefore x^{3}-5 x+2=(x-2)\left(x^{2}+2 x-1\right)=0$
$x=2$ or $x=-1 \pm \sqrt{2}$ (using the quadratic formula)

Alternatively, you can use long division to get the factors of $x^{3}-5 x+2$

Example 4

Solve for x : $2 x^{3}-3 x^{2}-8 x-3=0$

Solution

Solution

Try $x=1: \quad 2(1)^{3}-3(1)^{2}-8(1)-3=-12$
Try $x=-1: \quad 2(-1)^{3}-3(1)^{2}-8(-1)-3=0 \quad \therefore(x+1)$ is a factor
$\therefore(x+1)\left(2 x^{2}+k x-3\right)=2 x^{3}-3 x^{2}-8 x-3$
Compare x^{2} terms on both sides:
(N.B. It does not matter whether you compare x^{2} or x terms)
$-3 x^{2}=2 x^{2}+k x^{2}$
$\therefore-3=2+k$
$\therefore k=-5$
$\therefore(x+1)\left(2 x^{2}-5 x-3\right)=2 x^{3}-3 x^{2}-8 x-3=0$
$\therefore(x+1)(2 x+1)(x-3)=0$
$\therefore x=-1, x=-\frac{1}{2}, x=3$

Solve for x :

1. $2 x^{3}-x^{2}-x=0$
\qquad
\qquad
\qquad
2. $x^{3}-x=0$
\qquad
\qquad
\qquad
3. $\frac{2}{3} x^{3}-18=0$
\qquad
\qquad
\qquad
\qquad
4. $x^{3}+3 x^{2}-4 x-12=0$
\qquad
\qquad
\qquad
\qquad
\qquad
5. $x^{3}-3 x-2=0$
\qquad
\qquad
\qquad
\qquad
\qquad
6. $2 x^{3}+5 x^{2}-14 x-8=0$
\qquad
\qquad
\qquad
\qquad
\qquad
7. $x^{3}+7 x^{2}-36=0$
8. $4 x^{3}+12 x^{2}+9 x+2=0$
\qquad
\qquad
\qquad
\qquad
9. $x^{3}-2 x^{2}-4 x+3=0$
\qquad
\qquad
\qquad
\qquad
\qquad

Activity 2

1. Given that: $f(x)=6 x^{3}-37 x^{2}+5 x+6$ and $f(6)=0$, solve for x, if $f(x)=0$
\qquad
\qquad
\qquad
2. Solve for x and y if:

$$
y=x^{3}+9 x^{2}+26 x+16 \text { and } y-3 x=1
$$

3. In the diagram: $f(x)=x^{3}$ and $g(x)=-3 x^{2}+x+3$

Determine the coordinates of A and B ，the points of intersection of f and g ．
\qquad
\qquad
\qquad

4．In the diagram：$f(x)=x^{2}-7$ and $g(x)=\frac{6}{x}$

Make use of the diagram，and a cubic equation，to solve the inequality： $\frac{6}{x} \geq x^{2}-7$
\qquad
\qquad
\qquad
\qquad
\qquad

Solutions to Activities

Activity 1

1． $2 x^{3}-x^{2}-x=0$
$\therefore x\left(2 x^{2}-x-1\right)=0$
$\therefore x(2 x+1)(x-1)=0$
$\therefore x=0$ or $x=-\frac{1}{2}$ or $x=1$
2．$x^{3}-x=0$
$\therefore x\left(x^{2}-1\right)=0$
$\therefore x(x-1)(x+1)=0$
$\therefore x=0$ or $x= \pm 1$
3. $\frac{2}{3} x^{3}-18=0$
$\therefore 2 x^{3}-54=0$
$\therefore 2 x^{3}=54$
$\therefore x^{3}=27$
$\therefore x=7$
4. $x=2$ is a solution since $2^{3}+3(2)^{2}-4(2)-12=0$
$\therefore(x-2)\left(x^{2}+\mathrm{k} x+6\right)=x^{3}+3 x^{2}-4 x-12$
Compare x terms on LHS and RHS:
$-2 \mathrm{k} x+6 x=-4 x$
$\therefore-2 k+6=-4$
$\therefore-2 k=-10$
$\therefore \mathrm{k}=5$
$\therefore x 3+3 x 2-4 x-12=(x-2)\left(x^{2}+5 x+6\right)$
$\therefore(x-2)(x+3)(x+2)=0$
$\therefore x=-3$ or $x= \pm 2$
5. $x=-1$ is a solution since $(-1)^{3}-3(-1)-2=0$
$\therefore(x+1)\left(x^{2}+\mathrm{k} x-2\right)=x^{3}-3 x-2$
Compare x terms on LHS and RHS:
$-2 x+k x=-3 x$
$\therefore-2+\mathrm{k}=-3$
$\therefore \mathrm{k}=-1$
$\therefore(x+1)\left(x^{2}+x-2\right)=x^{3}-3 x-2$
$\therefore(x+1)(x-2)(x+1)=0$
$\therefore x=-1$ or $x=2$
6. $x=2$ is a solution since $2(2)^{3}+5(2)^{2}-14(2)-8=0$
$\therefore(x-2)\left(2 x^{2}+\mathrm{k} x+4\right)=2 x^{3}+5 x^{2}-14 x-8$
Compare x terms on LHS and RHS:
$-2 \mathrm{k} x+4 x=-14 x$
$\therefore-2 k+4=-14$
$\therefore-2 k=-18$
$\therefore \mathrm{k}=9$
$\therefore(x-2)\left(2 x^{2}+9 x+4\right)=2 x^{3}+5 x^{2}-14 x-8$
$\therefore(x-2)(2 x+1)(x+4)=0$
$\therefore x=2$ or $x=-\frac{1}{2}$ or $x=-4$
7.
$x=2$ is a solution since
$(2)^{3}+7(2)^{2}-36=0$
$\therefore(x-2)\left(x^{2}+\mathrm{k} x+18\right)=x^{3}+7 x^{2}-36$
Compare x terms on LHS and RHS:
$-2 \mathrm{k} x+18 x=0 x$
$\therefore-2 k+18=0$
$\therefore-2 k=-18$
$\therefore \mathrm{k}=9$
$\therefore(x-2)\left(x^{2}+9 x+18\right)=x^{3}+7 x^{2}-36$
$\therefore(x-2)(x+3)(x+6)=0$
$\therefore x=-2$ or $x=-3$ or $x=-6$
8. $x=-2$ is a solution since $4(-2)^{3}+12(-2)^{2}+9(-2)+2=0$
$\therefore(x+2)\left(4 x^{2}+\mathrm{k} x+1\right)=4 x^{3}+12 x^{2}+9 x+2$
Compare x terms on LHS and RHS:
$x+2 \mathrm{k} x=9 x$
$\therefore 1+2 \mathrm{k}=9$
$\therefore 2 \mathrm{k}=8$
$\therefore \mathrm{k}=4$
$\therefore(x+2)\left(4 x^{2}+4 x+1\right)=4 x^{3}+12 x^{2}+9 x+2$
$\therefore(x+2)(2 x+1)(2 x+1)=0$
$\therefore x=-\frac{1}{2}$ or $x=-2$
9. $x=3$ is a solution since $(3)^{3}+2(3)^{2}-4(3)+3=0$
$\therefore(x-3)\left(x^{2}+\mathrm{k} x-1\right)=x^{3}+2 x^{2}-4 x+3$
Compare x terms on LHS and RHS:
$-3 \mathrm{k} x-x=-4 x$
$\therefore-3 \mathrm{k}-1=-4$
$\therefore-3 k=-3$
$\therefore \mathrm{k}=1$
$\therefore(x-3)\left(x^{2}+x-1\right)=x^{3}+2 x^{2}-4 x+3$
$\therefore x-3=0 \quad$ or $\quad x 2+x-1=0$
$\therefore x=3$

$$
\begin{aligned}
& x=\frac{-1 \pm \sqrt{1-4(1)(-1)}}{2(1)} \\
& x=\frac{-1 \pm \sqrt{5}}{2}
\end{aligned}
$$

Activity 2

1. $f(6)=0$
$\therefore(x-6)$ is a factor of $f(x)$
$\therefore f(x)=(x-6)\left(6 x^{2}-x-1\right)$
$\therefore f(x)=(x-6)(3 x+1)(2 x-1)$
\therefore If $f(x)=0$, then
$\therefore x=6$ or $x=-\frac{1}{3}$ or $x=\frac{1}{2}$
2. $x^{3}+9 x^{2}+26 x+16=3 x+1$
$\therefore x^{3}+9 x^{2}+23 x+15=0$
$x=-1$ is a solution since $(-1) 3+9(-1) 2+23(-1)+15=0$
$\therefore(x+1)(x 2+8 x+15)=0$
$\therefore(x+1)(x+5)(x+3)=0$
$\therefore x=-1$ or $x=-5$ or $x=-3$
3. For co-ordinates of A and B, we have
$\therefore x^{3}=-3 x^{2}+x+3$
$\therefore x^{3}+3 x^{2}-x-3=0$
$\therefore x^{2}(x+3)-(x+3)=0$
$\therefore(x+3)\left(x^{2}-1\right)=0$
$\therefore x= \pm 1$ or $x=-3$
4. First, we must find the points of intersection. Therefore:
$x^{2}-7=\frac{6}{x}$
$\therefore x^{3}-7 x=6$
$\therefore x^{3}-7 x-6=0$
Now, $x=-1$ is a solution since $(-1)^{3}-7(-1)-6=0$
$\therefore(x+1)\left(x^{2}-x-6\right)=0$
$\therefore(x+1)(x+2)(x-3)=0$
$\therefore x=-1$ or $x=-2$ or $x=3$

\therefore Reading solution to $\frac{6}{x} \geq x^{2}-7$ from graph, we get $0<x \leq 3$ or $-2 \leq x \leq-1$
