SOLVING CUBIC EQUATIONS

A cubic expression is an expression of the form $ax^3 + bx^2 + cx + d$. The following are all examples of expressions we will be working with:

$$2x^3 - 16$$
, $x^3 - 2x^2 - 3x$, $x^3 + 4x^2 - 16$, $2x^3 + x - 3$.

Remember that some quadratic expressions can be factorised into two linear factors:

e.g. $2x^2 - 3x + 1 = (2x - 1)(x - 1)$ Quadratic Linear Linear

Now, a cubic expression may be factorised into

(i) a linear factor and a quadratic factor or (ii) three linear factors.For example, you can easily verify, by multiplying out the right hand side that:

(i)
$$x^3 - 8 = (x - 2)(x^2 + 2x + 4)$$

Linear Quadratic

(ii) $4x^3 - 4x^2 - x + 1 = (x - 1)(2x - 1)(2x + 1)$ Linear Linear Linear

There are three types of factorisation methods we will consider:

- Common factor
- Grouping terms
- Factor theorem

Type 1 - Common factor

In this type there would be no constant term.

LESSON

Example 1

Solve for *x*: $x^3 + 5x^2 - 14x = 0$

Solution

Example ⁶

Solution

Solution

 $x(x^{2} + 5x - 14) = 0$ ∴ x(x + 7)(x - 2) = 0∴ x = 0, x = 2, x = -7

Type 2 - Grouping terms

With this type, we must have all four terms of the cubic expression. We then pair terms with a common factor and see if a common bracket emerges.

Example 2

Solve for *x*: $x^3 + 2x^2 - 9x - 18 = 0$

Solution:

Page 80

.

 $\therefore (x+2)(x^2-9) = 0$ $\therefore (x+2)(x-3)(x+3) = 0$ $\therefore x = -2, x = 3, x = -3$

Type 3 - Using the factor theorem

N.B. If (x - a) is a factor of the cubic expression, then f(a) = 0.

So, we substitute in values of $x = \pm 1, \pm 2...$ etc until we find a value which makes the expression equal to 0.

Example 3

Solve for *x*: $x^3 - 5x + 2 = 0$

Solution

Try x = 1: $1^{3} - 5(1) + 2 = -2$ Try x = -1: $(-1)^{3} - 5(-1) + 2 = 6$ Try x = 2: $2^{3} - 5(2) + 2 = 0$ $\therefore (x - 2)$ is a factor $\therefore (x - 2)(\text{quadratic}) = x^{3} - 5x + 2$ $(x - 2)(x^{2} + kx - 1) = x^{3} - 5x + 2$ by inspection. Compare x terms on LHS and RHS: -5x = -x - 2kx $\therefore -5 = -1 - 2k$ $\therefore k = 2$ $\therefore x^{3} - 5x + 2 = (x - 2)(x^{2} + 2x - 1) = 0$

 $x = 2 \text{ or } x = -1 \pm \sqrt{2} \text{ (using the quadratic formula)}$

Alternatively, you can use long division to get the factors of $x^3 - 5x + 2$

Example 4

Solve for *x*: $2x^3 - 3x^2 - 8x - 3 = 0$

Solution

Try x = 1: $2(1)^3 - 3(1)^2 - 8(1) - 3 = -12$ Try x = -1: $2(-1)^3 - 3(1)^2 - 8(-1) - 3 = 0$ $\therefore (x + 1)$ is a factor $\therefore (x + 1)(2x^2 + kx - 3) = 2x^3 - 3x^2 - 8x - 3$

Compare x^2 terms on both sides:

(N.B. It does not matter whether you compare x^2 or x terms)

$$-3x^{2} = 2x^{2} + kx^{2}$$

$$\therefore -3 = 2 + k$$

$$\therefore k = -5$$

$$\therefore (x + 1)(2x^{2} - 5x - 3) = 2x^{3} - 3x^{2} - 8x - 3 = 0$$

$$\therefore (x + 1)(2x + 1)(x - 3) = 0$$

$$\therefore x = -1, x = -\frac{1}{2}, x = 3$$

Solution

Solution

Page 81

2. $x^3 - x = 0$	
3. $\frac{2}{3}x^3 - 18 = 0$	
4. $x^3 + 3x^2 - 4x - 12 = 0$	
5. $x^3 - 3x - 2 = 0$	
6. $2x^3 + 5x^2 - 14x - 8 = 0$	
7. $x^3 + 7x^2 - 36 = 0$	

8.	$4x^3 + 12x^2 + 9x + 2 = 0$	
9.	$x^3 - 2x^2 - 4x + 3 = 0$	
Act 1.	<i>ivity 2</i> Given that: $f(x) = 6x^3 - 37x^2 + 5x + 6$ and $f(6) = 0$, solve for x , if $f(x) = 0$	Activity
2.	Solve for <i>x</i> and <i>y</i> if: $y = x^3 + 9x^2 + 26x + 16$ and $y - 3x = 1$	

Determine the coordinates of A and B, the points of intersection of f and g.

4. In the diagram: $f(x) = x^2 - 7$ and $g(x) = \frac{6}{x}$

Make use of the diagram, and a cubic equation, to solve the inequality: $\frac{6}{x} \ge x^2 - 7$

Solutions to Activities

Activity 1

1.
$$2x^{3} - x^{2} - x = 0$$

 $\therefore x(2x^{2} - x - 1) = 0$
 $\therefore x(2x + 1)(x - 1) = 0$
 $\therefore x = 0 \text{ or } x = -\frac{1}{2} \text{ or } x = 1$
2. $x^{3} - x = 0$
 $\therefore x(x^{2} - 1) = 0$
 $\therefore x(x - 1)(x + 1) = 0$
 $\therefore x = 0 \text{ or } x = \pm 1$

Page 84

•

×

 $\frac{2}{3}x^3 - 18 = 0$ 3. $\therefore 2x^3 - 54 = 0$ $\therefore 2x^3 = 54$ $\therefore x^3 = 27$ $\therefore x = 7$ x = 2 is a solution since $2^3 + 3(2)^2 - 4(2) - 12 = 0$ 4. $\therefore (x-2)(x^2 + kx + 6) = x^3 + 3x^2 - 4x - 12$ Compare *x* terms on LHS and RHS: -2kx + 6x = -4x $\therefore -2k+6=-4$ $\therefore -2k = -10$ $\therefore k = 5$ $\therefore x3 + 3x2 - 4x - 12 = (x - 2)(x^2 + 5x + 6)$ $\therefore (x-2)(x+3)(x+2) = 0$ $\therefore x = -3$ or $x = \pm 2$ 5. x = -1 is a solution since $(-1)^3 - 3(-1) - 2 = 0$ $\therefore (x+1)(x^2+kx-2) = x^3-3x-2$ Compare *x* terms on LHS and RHS: -2x + kx = -3x $\therefore -2 + k = -3$ $\therefore k = -1$ $\therefore (x+1)(x^2+x-2) = x^3 - 3x - 2$ $\therefore (x+1)(x-2)(x+1) = 0$ $\therefore x = -1$ or x = 26. x = 2 is a solution since $2(2)^3 + 5(2)^2 - 14(2) - 8 = 0$ $\therefore (x-2)(2x^2 + kx + 4) = 2x^3 + 5x^2 - 14x - 8$ Compare *x* terms on LHS and RHS: -2kx + 4x = -14x $\therefore -2k + 4 = -14$ $\therefore -2k = -18$ $\therefore k = 9$ $\therefore (x-2)(2x^2+9x+4) = 2x^3+5x^2-14x-8$ $\therefore (x-2)(2x+1)(x+4) = 0$ $\therefore x = 2$ or $x = -\frac{1}{2}$ or x = -4

	7.	$x = 2$ is a solution since $(2)^3 + 7(2)^2 - 36 = 0$
		$\therefore (x-2)(x^2 + kx + 18) = x^3 + 7x^2 - 36$
		Compare <i>x</i> terms on LHS and RHS:
		-2kx + 18x = 0x
		$\therefore -2k + 18 = 0$
		$\therefore -2k = -18$
		\therefore k = 9
		$\therefore (x-2)(x^2+9x+18) = x^3+7x^2-36$
		$\therefore (x-2)(x+3)(x+6) = 0$
		$\therefore x = -2$ or $x = -3$ or $x = -6$
	8.	$x = -2$ is a solution since $4(-2)^3 + 12(-2)^2 + 9(-2) + 2 = 0$
		$\therefore (x+2)(4x^2+kx+1) = 4x^3+12x^2+9x+2$
		Compare <i>x</i> terms on LHS and RHS:
		x + 2kx = 9x
		$\therefore 1 + 2k = 9$
		$\therefore 2k = 8$
		\therefore k = 4
		$\therefore (x+2)(4x^2+4x+1) = 4x^3+12x^2+9x+2$
		$\therefore (x+2)(2x+1)(2x+1) = 0$
		$\therefore x = -\frac{1}{2} \text{ or } x = -2$
	9.	$x = 3$ is a solution since $(3)^3 + 2(3)^2 - 4(3) + 3 = 0$
		$\therefore (x-3)(x^2+kx-1) = x^3 + 2x^2 - 4x + 3$
		Compare x terms on LHS and RHS:
		-3kx - x = -4x
		$\therefore -3k - 1 = -4$
		$\therefore -3k = -3$
		\therefore k = 1
		$\therefore (x-3)(x^2+x-1) = x^3 + 2x^2 - 4x + 3$
		$\therefore x - 3 = 0$ or $x + x - 1 = 0$
		$\therefore x = 3 \qquad x = \frac{-1 \pm \sqrt{1 - 4(1)(-1)}}{2(1)} \\ x = \frac{-1 \pm \sqrt{5}}{2}$
	($x = \frac{-1 \pm \sqrt{5}}{2}$
	Activ	ity 2
	1.	f(6) = 0
		\therefore (x – 6) is a factor of $f(x)$
		∴ $f(x) = (x-6)(6x^2 - x - 1)$
AT		∴ $f(x) = (x-6)(3x+1)(2x-1)$
Entre I)	:. If $f(x) = 0$, then
\langle	- 1 - a	: $x = 6$ or $x = -\frac{1}{3}$ or $x = \frac{1}{2}$
K.A	ge	
Ч.		

Page 86

•

 $(\bigcirc$

- 2. $x^3 + 9x^2 + 26x + 16 = 3x + 1$ $\therefore x^3 + 9x^2 + 23x + 15 = 0$ x = -1 is a solution since (-1)3 + 9(-1)2 + 23(-1) + 15 = 0 $\therefore (x + 1)(x^2 + 8x + 15) = 0$ $\therefore (x + 1)(x + 5)(x + 3) = 0$ $\therefore x = -1$ or x = -5 or x = -3
- 3. For co-ordinates of A and B, we have

$$∴ x^{3} = -3x^{2} + x + 3$$

$$∴ x^{3} + 3x^{2} - x - 3 = 0$$

$$∴ x^{2}(x + 3) - (x + 3) = 0$$

$$∴ (x + 3)(x^{2} - 1) = 0$$

 $\therefore x = \pm 1$ or x = -3

4. First, we must find the points of intersection. Therefore:

$$x^{2} - 7 = \frac{6}{x}$$

$$\therefore x^{3} - 7x = 6$$

$$\therefore x^{3} - 7x - 6 = 0$$

Now, $x = -1$ is a solution since $(-1)^{3} - 7(-1) - 6 = 0$

$$\therefore (x + 1)(x^{2} - x - 6) = 0$$

$$\therefore (x + 1)(x + 2)(x - 3) = 0$$

$$\therefore x = -1 \text{ or } x = -2 \text{ or } x = 3$$

:. Reading solution to $\frac{6}{x} \ge x^2 - 7$ from graph, we get $0 < x \le 3$ or $-2 \le x \le -1$

