

NATIONAL CURRICULUM STATEMENT GRADES 10-12

SUBJECT: PHYSICAL SCIENCES

TEACHER TRAINING MANUAL 2006

CONTENTS

PROGRAMME	2
SESSION 1 – Introducing the National Curriculum Statement (NCS) and the National Senior Certificate (NSC)	4
SESSION 2 – Introducing the Subject Statement	6
SESSION 3 – Planning for teaching subjects in the NCS	11
SESSION 4 – Annual assessment plan	14
APPENDICES	16

PROGRAMME

PERIOD: Monday to Friday

DURATION: 36 - 37 hours

5-DAY PROGRAMME FOR TEACHERS-

SESSION	ACTIVITY	TIME	DAY
1. Introducing the	Activity 1: Introduction	08:30 - 08:45	Monday
National Curriculum	of participants		-
Statement (NCS) and	Activity 2: Overview of	08:45 - 09:00]
the National Senior	the week		
Certificate (NSC)	Activity 3: Introduction	09:00 - 10:30]
	to the NCS and NSC		
	TEA BREAK	10:30 - 11:00	·
1. Introducing the	Activity 3: Introduction	11:00 - 12:00	Monday
National Curriculum	to the NCS and NSC		-
Statement (NCS) and			
the National Senior			
Certificate (NSC)			
2. Introducing the	Activity 1: Introduction	12:00 – 13:00	Monday
Subject Statement	to Physical Science		
	LUNCH BREAK	13:00 - 14:00	
2. Introducing the	Activity 1: Introduction	14:00 - 15:00	Monday
Subject Statement	to Physical Science	45.00 45.00	4
	Activity 2: Learning	15:00 – 15:30	
	Outcomes and		
	Assessment Standards	15.00 40.00	
		15:30 -16:00	Mandau
2. Introducing the	Activity 2: Learning	16:00 - 18:30	Monday
Subject Statement	Accomes and		
2 Introducing the	Assessment Standards	00.20 10.20	Tuesday
2. Introducing the	Context for attaining	00.30 - 10.30	Tuesday
Subject Statement	Assessment Standards		
	TEA BREAK	10.30 - 11.00	
2 Introducing the	Activity 3 Cont	11:00 -13:00	Tuesday
Subject Statement	Addivity 8 Cont.	11.00 10.00	rucoddy
	LUNCH BREAK	13:00 - 14:00	
2. Introducing the	Activity 3 Cont.	14:00 - 15:30	Tuesdav
Subject Statement			
-	TEA BREAK	15:30 - 16:00	
2. Introducing the	Activity 4	16:00 - 18:00	Tuesday
Subject Statement	-		
2. Introducing the	Activity 4 Cont.	08:30 - 10:30	Wednesday
Subject Statement			
	TEA BREAK	10:30 - 11:00	1
2. Introducing the	Activity 4 Cont.	11:00 – 13:00	Wednesday
Subject Statement			
	LUNCH BREAK	13:00 - 14:00	1
2. Introducina the	Activity 4 Cont.	13:00 - 15:30	Wednesdav
Subject Statement	,		,
	TEA BREAK	15:30 - 16:00	I
2. Introducing the	Activity 4 Cont.	16:00 - 17:30	Wednesdav
Subject Statement	,		,

3. Planning for	Activity 1: Introduction	08:30 - 09:00	Thursday
teaching subjects in	to the planning cycle		
the NCS			
TE	EA BREAK 10:	00 – 10:30	
3. Planning for	Activity 2: Introduction	10:30 - 11:30	Thursday
teaching subjects in	to the Grade 11 Work		
the NCS	Schedule		
	Activity 3: Critique the	11:30 - 13:00	
	Grade 11 Work		
	Schedule		
LL	JNCH BREAK 13:	:00 – 14:00	
3. Planning for	Activity 3: Cont.	14:00 – 15:30	Thursday
teaching subjects in			
the NCS			
	A BREAK 15:	30 – 16:00	
3. Planning for	Activity 3: Cont.	16:00 – 17:30	Thursday
teaching subjects in			
the NCS	Activity 4. Depent heads	00.00 00.00	Frider
3. Planning for	Activity 4: Report back	08:00 - 09:00	Friday
teaching subjects in	Activity 5: Development	09:00 - 10:00	
the NCS	of the first Lesson Plan		
		00 10:20	
	Activity 1: introduction	10.30 10.45	Friday
4. Annual	to Assessment in the	10.30 - 10.43	Пау
assessment plan	NCS		
	Activity 2: Programme	10.45 - 12.00	-
	of Assessment for	10.40 12.00	
	Grade 10 and 11		
	Activity 3: Development	12.00 - 13.00	4
	of A grade 11 annual	12.00 10.00	
	Assessment Plan		
LL	JNCH BREAK 1	3:00 – 14:00	1

SESSION 1

Introducing the National Curriculum Statement (NCS) and the National Senior Certificate (NSC) (3-4 hours)

ACTIVITY 1: INTRODUCTIONS Time Allocation: 15 minutes

• Facilitators and participants will be introduced.

ACTIVITY 2: OVERVIEW OF THE WEEK OF TRAINING / DOCUMENTS PROVIDED Time Allocation: 30 minutes

FORM OF ACTIVITY:PresentationRESOURCES:The 5-day training programme (PowerPoint)
A hard copy of each document referred to-

- National Senior Certificate Policy
- Subject Statement
- Subject Assessment Guidelines
- Learning Programme Guidelines
- National Protocol on Assessment
- Higher Education admission requirements

CONTENT:

- Training programme for the week and house rules
- Documents making up the National Curriculum Statement policy and documents supporting the National Curriculum Statement policy purpose and status of each

ACTIVITY 3: INTRODUCTION TO THE NCS AND NSC Time Allocation: 2 hours 15 minutes

<u>Part 1</u>

FORM OF ACTIVITY: Test and discussion

RESOURCES: PowerPoint Presentation, Laptop, and Data Projector

CONTENT:

• Focusing on the NCS and NSC

INSTRUCTIONS:

- Use the work sheet in Appendix 1 to answer the following questions.
- Discussion.

Part 2: NCS and NSC

FORM OF ACTIVITY: Presentation and discussion

RESOURCES:

PowerPoint Presentation, Laptop, Data Projector, a hard copy of each document referred to in the presentation-

- National Senior Certificate Policy
- Subject Statement
- Subject Assessment Guidelines
- Learning Programme Guidelines
- National Protocol on Assessment

CONTENT:

- Overview of the NCS, including principles and Critical and Developmental Outcomes
- National Senior Certificate: Requirements, structure and details

Part 3: Requirements for Higher Education study

FORM OF ACTIVITY: Open-book and presentation

RESOURCES: PowerPoint Presentation, Laptop, Data Projector, HE admission requirement

CONTENT:

Requirements for certificate, diploma and degree programmes

INSTRUCTIONS:

Introduction

• The facilitator will introduce the activity

Open-book activity

- Refer to Appendix 1
- Report back
- Discussion

SESSION 2 –

Introducing the Subject Statement (20 hours)

ACTIVITY 1: INTRODUCTION TO PHYSICAL SCIENCE

Time Allocation: 2 hours

Presentation:	20 minutes
Group Discussions:	45 minutes
Report back from each group:	45 minutes
Facilitator's wrap up:	10 minutes

FORM OF ACTIVITY:	Presentation,	group discussions,	and report back.
-------------------	---------------	--------------------	------------------

RESOURCES: PowerPoint Presentation, Laptop, Data Projector, and Subject Statement.

CONTENT:

- Overview of the subject: Definition, purpose and scope of the subject, and its origin.
- Learning Outcomes (LOs) for the subject.
- Critical Outcomes (COs) and Developmental Outcomes (DOs)

INSTRUCTIONS:

- Refer to pages 14-15 of the Subject Statement and discuss the relationship between Physical Sciences Learning Outcomes and Critical and Developmental outcomes.
- Discussion

ACTIVITY 2: LEARNING OUTCOMES AND ASSESSMENT STANDARDS FOR PHYSICAL SCIENCE

Time Allocation: 3 hours

20 minutes
1 hour 30 minutes
1 hour
10 minutes

FORM OF ACTIVITY: Presentation, analysis, group discussions, and report back.

RESOURCES: PowerPoint Presentation, Laptop, Data Projector, Subject Statement, Learning Programme Guidelines, and Syllabus

CONTENT:

- Learning Outcomes.
- Assessment Standards.

INSTRUCTIONS:

<u>Part 1</u>

- Divide into groups.
- Discuss the emphasis of each Learning Outcome.
- Discuss how the Learning Outcomes are related to each other.
- What is the best approach in teaching and learning the LOs?
- Report.
- Discussions.

<u>Part 2</u>

- Divide into groups.
- You are Allocated Assessment Standards per grade.
- Use templates in Appendix 2 to analyse the Assessment Standards by listing Skills, Knowledge and Values imbedded there in.
- On the same Appendix indicate progression of the Assessment Standards (skills, Knowledge and values) from one grade to another
- Report at plenary
- Discussions.

ACTIVITY 3: CONTENT FOR THE ATTAINMENT OF ASSESSMENT STANDARDS (Subject Statement pp 34-54)

Time Allocation: 5 hours 30 minutes

Presentation:30 minutesGroup Discussions:2 Activities x 1 hour = 2 hoursReport back from each group:2 hoursFacilitator's wrap up and discussions on the content: 1 hour

FORM OF ACTIVITY: Presentation, analysis, group discussions, and report back.

RESOURCES: PowerPoint Presentation, Laptop, Data Projector, Subject Statement, Learning Programme Guidelines, and Syllabus.

CONTENT:

- Content for Physical Sciences Grades 10-12.
- Gap analysis.

INSTRUCTIONS:

- Divide into groups.
- Each group is allocated a knowledge area per grade.
- Each group analyses pages 34 53 of the Subject Statement and the content in Report 550 Physical Science syllabus
- Critique the provided gap analysis document in Appendix 3
- Report at plenary
- Discussions.

ACTIVITY 4: LEARNING AND TEACHING ACTIVITIES FOR PHYSICAL SCIENCE Time Allocation: 5 hours

Presentation: 15 minutes Group Discussions: 2.5 hours Report back from each group: 2 hours Facilitator's wrap up: 15 minutes

- FORM OF ACTIVITY: Presentation, group discussions, presentations of different groups.
- **RESOURCES:** PowerPoint Presentation, Laptop, Data Projector, Subject Statement, Learning Programme Guidelines, and Relevant Apparatus.

CONTENT:

- Content for Physical Sciences Grades 10-12.
- Possible contexts for Physical Sciences Grades 10-12.
- Design and presentation of activities.
- How these activities can be assessed.

INSTRUCTIONS:

<u>Part 1</u>

- Divide into six groups.
- Analyse the teaching and learning activities in Appendix 4.
- Use the table in Appendix 5 to critique the activity.
- Report at plenary.

<u>Part 2</u>

- Discuss improvements that can be made on the activities.
- Report at plenary.
- Discussions.

ACTIVITY 5: Recommendations and closure Time Allocation: 30 minutes

- Wrap up presentation
- Discussion

SESSION 3 –

Planning for teaching subjects in the NCS (8 hours)

ACTIVITY 1: INTRODUCTION TO THE PLANNING CYCLE Time Allocation: 30 minutes

FORM OF ACTIVITY: Presentation and discussion

RESOURCES: PowerPoint Presentation, Laptop, and Data Projector

CONTENT:

- Three stages of planning
- Purpose, role-players and duration per stage
- Issues to consider when developing a Learning Programme
- Brief overview of the key activities and development process per stage

ACTIVITY 2: INTRODUCTION TO THE GRADE 11 AND 12 WORK SCHEDULE Time Allocation: 1 hour

FORM OF ACTIVITY: Presentation and discussion

RESOURCES:OHP of Grade 11 Work Schedule, OHP Projector, OHP Pens,
OHP Sheets, Subject Assessment Guidelines, Learning
Programme Guidelines, and Subject Statement

CONTENT:

- Elements of design
- Process of design
 - o Integration: What, how and why?
 - o Sequencing: What, how and why?
 - Pacing: What, how and why?
 - Suggested assessment tasks: What and why?
 - LTSM: What and why?

ACTIVITY 3: DESIGNING A WORK SCHEDULE Time Allocation: 4 hours 30 minutes

FORM OF ACTIVITY: Interactive, report back and discussion

RESOURCES: Subject Statement, Learning Programme Guidelines, and Subject Assessment Guidelines

CONTENT:

• Work Schedule

INSTRUCTIONS:

- Divide into groups.
- Each group is allocated a grade.
- Analyse the work schedule of your allocated grade as provided in the Learning Programme Guidelines
- Critique the work schedule using the work sheet in Appendix 6
- Report
- Discussion

ACTIVITY 4: DEVELOPMENT OF THE FIRST LESSON PLAN FOR GRADE 11

Time Allocation: 1 hour

FORM OF ACTIVITY: Presentation, interactive, report back and discussion

RESOURCES: PowerPoint Presentation, Laptop, Data Projector, Subject Statement, and Learning Programme Guidelines

CONTENT:

- Grade 11and 12 Lesson Plan
 - o Elements of design
 - o Process of design

INSTRUCTIONS:

- Divide into groups.
- Each group is allocated a knowledge area.
- Use the template in Appendix 7 and design the first Lesson Plan that will be presented for the first 2-5 days of the school year according to the work Schedules critiqued in Activity 3.
- Report at plenary.
- Discussion.

SESSION 4 –

Annual assessment plan (5 hours)

ACTIVITY 1: INTRODUCTION TO ASSESSMENT IN THE NCS

Time Allocation: 30 minutes

FORM OF ACTIVITY: Presentation and discussion

RESOURCES: PowerPoint Presentation, Laptop, Data Projector, and National Protocol on Assessment

CONTENT:

- Approach to assessment: Criteria-driven
- Recording process: Record one global mark / code per task and refer to the Subject Assessment Guidelines for guidance on how to arrive at the final mark for the subject
- Reporting process: 7 codes and percentages
- Portfolios: Teacher and learner

ACTIVITY 2: PROGRAMME OF ASSESSMENT FOR GRADES 10 AND 11 Time Allocation: 2 hour

FORM OF ACTIVITY: Presentation and discussion

RESOURCES: PowerPoint Presentation, Laptop, Data Projector, and Subject Assessment Guidelines

CONTENT:

- Programme of Assessment for Grades 10 and 11 (Section 2 of the Subject Assessment Guidelines): Number of tasks
- Nature of tasks: Forms of assessment suitable to the subject (Section 3 of the Subject Assessment Guidelines) and suitable tools
- Weighting of tasks for the formal Programme of Assessment and mark allocation

ACTIVITY 3: DEVELOPMENT OF A GRADE 11 ANNUAL ASSESSMENT PLAN Time Allocation: 2 hour

FORM OF ACTIVITY: Presentation, interactive and discussion

RESOURCES: PowerPoint Presentation, Laptop, Data Projector, and Subject Assessment Guidelines

CONTENT:

- Programme of Assessment for Grade 11: Tasks, topics, tools and dates
- Recording assessment.

INSTRUCTIONS:

<u>Part 1</u>

- Divide into groups
- Use the template in Appendix 8 and compile a Grade 10 / 11 / 12 annual assessment plan.
- Refer to Work Schedules in Session 3 and align the annual assessment plan with the assessment tasks listed in the Work Schedules.

ACTIVITY 4: Recommendations and closure Time Allocation: 30 minutes

- Wrap up presentation
- Discussion

APPENDICES

APPENDIX 1

SESSION 1 – ACTIVITY 3 – PART 1

Make use of your knowledge of the NCS and related documents to answer the following questions. • Fill in the answers as quick as possible

Keep answers short and to the point.

No	Answer
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	

SESSION 1 – ACTIVITY 3 – PART 3

Study the HE document and identify the requirements for certificate, diploma and degree programmes

HIGHER CERTIFICATE	DIPLOMA	BACHELOR'S DEGREE

ANALYSIS OF ASSESSMENT STANDARDS – SESSION 2-ACTIVITY 3 – PART 2

ASSESSMENT	SKILLS	KNOWLEDGE	VALUES
STANDARD			

ASSESSMENT	GRADE 10	GRADE 11	GRADE 12
STANDARD	Skille	Skille	Skille
	Knowledge	Knowledge	Knowledge
	Value	Value	Value

NCS TEACHER TRAINING MANUAL 2006: PHYSICAL SCIENCES

GAP ANALYSIS - SESSION 2-ACTIVITY 3 - PART 1

	Report 550	NCS	Gaps	Methodology	ICT	Assessment
		L0 1:		L01:		
	Waves,	Each knowledge area comprises of themes	New content:		Through its very	All assessment should be
	Light;		Fiber optics, Global cycles,	In achieving this	nature, Physical	criterion referenced
	Sound	LO 2:	hydrosphere	outcome, a practical	Sciences requires	
	Electricity;	Mechanics		approach to solving	learners to handle	LO1:
G	Chemical reaction of	Motion in one dimension, Gravity and	Imported from Gr11&12:	problems using the	data in the form of	The following forms of
R	certain elements;	mechanical energy	Vectors, Gravity, Mechanical	Scientific Method	text, numbers,	assessment could be used:
А	Atomic structure;	Waves, Sound and Light:	energy, Mixtures, IMF,	should be pursued.	graphs, tables, and	
D	Acids, Bases and	Transverse pulse on a string or spring;		Apparatus and	so on.	Practical experiments
E	Salts;	Transverse waves; Geometrical optics	Retained content:	chemicals should be		Practical tests
	Chemical Reactions	Electricity and Magnetism:	Transverse waves, Light,	used to perform	This subject also	Research projects or
10	and Electricity;	Magnetism; Electrostatics; Electric circuits	Magnetism, Electricity,	experiments and	requires learners	investigations
	Ionic reactions;	Matter and materials:	Periodic Lable, Atomic	tests.	to do research in	Case studies
	Heat and Work;	Observing, describing, classifying and using	Structure, Ionic solutions,		the various media.	
		materials- a microscopic view;	Writing balanced chemical		To most the	Assessment tools will mostly be
		Particles substances are made of; The Atom:	equations.		To meet the	RUDIICS
		basic building block of all matter	Domoved/Dronned		learners present	
		Chemical Change Deviced and Chemical changes Depresenting	Sound Longos Spood of		and luture	
		chomical change	Juliu, Lelises, Speeu of			
		Chemical Systems	current Electromagnetic			
		Global cycles: The hydrosphere	induction Wet chemistry			
			Electrolysis Heat and Work			
		The contexts provide the means through	Electrolysis, field and work			
		which core concents can be used to attain				
		Assessment Standards				
		Knowledge areas:				
		Mechanics				
		Waves, sound and light				
		Electricity and magnetism				
		Matter and materials				
		Chemical change				
		Chemical systems				

NCS TEACHER TRAINING MANUAL 2006: PHYSICAL SCIENCES

	Report 550	NCS	Gaps	Methodology	ICT	Assessment
		LO 1:		LO2:	needs, the	LO2:
	Vectors;	Each knowledge area comprises of themes	New content:		following ICT skills	
	Displacement-time,		Normal force, Torque, SALT	In achieving this	are recommended:	The following forms of
	velocity-time	LO 2:	telescope, Ultrasound,	outcome, co-		assessment could be used:
	relationship;	Mechanics	Standing waves in musical	operative learning	Ability to:	
G	Light;	Force, momentum and impulse	instruments, Capacitance,	strategies should		Tests or examinations
R	The Atom;	Waves, Sound and Light	Wheatstone bridge, Semi-	be used to get	Use Word	Assignments
А	The Periodic Table;	Geometrical optics; Longitudinal waves;	conductors, Oxidation	learners to engage	Processors; Power	Research projects or
D	Chemical Bonding,	Sound; Physics of music	number, Bond energy and	the content	Point;	investigations
E	The Kinetic Model of	Electricity and Magnetism	length, VSEPR theory,	themselves. OBE	The Internet;	Case studies
	Matter and	Electrostatics; Electromagnetism; Electric	Radioactivity, Mining and	methodologies	E-mail;	
11	Intermolecular	circuits	mineral processing, Global	such as the	Equation editor;	Assessment tools will mostly be
	Forces; Inorganic	Matter and Materials	warming.	Jigsaw, Round	and the	marking memorandums linked to
	Chemistry	Electric properties of matter; Atomic		Robin, Hot Potato,	Spread sheets	Rubrics.
		combinations: molecular structure; Atomic	Imported from Gr10&12:	and so on, could		
		nuclei; Ideal gases and thermal properties.	Impulse and momentum,	be used to urge		Checklists and observation
			Newton's laws of motion,	learners to recall,		sheets can also be used to
		Quantitative aspects of chemical change;	Oplics, Sound and	explain and apply		assess "assessment for learning"
		Energy and chemical change; Types of	Lostrostatios	knowledge.		activities.
		Chamical Systems	Electromagnetism Electricity			
		Evolution the lithesphere/Earth's crust. The	Electromagnetism, Electricity,	When required the		
		atmosphere	and ondothermic reactions	toochor should		
		aunosphere	Reaction types: acid-base	teach the learners		
		103	redox addition substitution	teach the learners.		
		The contexts provide the means through	elimination			
		which core concepts can be used to attain				
		Assessment Standards	Retained content:			
			Ideal Gases and KMT.			
		Knowledge areas:	Bonding models, Radio-			
		Mechanics	activity, stoichiometry			
		Waves, sound and light	<u>,</u>			
		Electricity and magnetism	Removed/Dropped:			
		Matter and materials	Vectors, Light, Inorganic			
		Chemical change	chemistry, Equations of			
		Chemical systems	motion, Development of			
			atomic model, e- filling of			
			orbitals, valency			

		LO 1:		LO 3:	LO 3:
	Bodies in motion;	Each knowledge area comprises of	New content:		
	Electrostatics;	themes	Horizontal projectile motion,	In achieving this outcome,	The following forms of
	Electric Current:		Oblique collisions, Doppler	learners should be exposed to	assessment could be used:
	Reaction Rates and	LO 2:	effect, Shock waves, Sonic	a variety of moral and ethical	
G	Chemical	Motion in two dimensions; Work, power	boom, De Broglie	issues in their environment,	Assignments
R	Equilibrium; Acids	and energy	wavelength, e microscope,	which they evaluate and take	Research projects or
А	and Bases;	Waves, Sound and Light	Inductance, Electronics,	decisions on. Issues such as	investigations
D	Oxidation-Reduction	Doppler Effect; Colour; 2D and 3D	Lasers, Substitution and	Global warming, genetic	Case studies
Е	and Electrochemical	wavefronts; Wave nature of matter	elimination reactions,	engineering, cloning,	Practical experiments
	cells;	Electricity and Magnetism	Hooke's Law, Organic	HIV/AIDS, pollution, alcohol,	
12	Organic Chemistry	Electrodynamics; Electronics;	macromolecules (plastics	drugs, and many more, can be	Assessment tools will mostly be
	с ,	Electromagnetic radiation	and biological), Chemical	used	Rubrics.
		Matter and materials	industries		
		Optical phenomena and properties of			
		materials; Organic molecules;	Imported from Gr. 10&11:		
		Mechanical properties; Organic	Colour of light, Diffraction &		
		macromolecules	interference, Electro-		
		Chemical Change	magnetic radiation,		
		Rate and extent of Reaction;	Transmission of light,		
		Electrochemical reactions	Photoelectric effect,		
		Chemical Systems	Electrolysis,		
		Chemical industry-resources, needs and			
		the chemical connection	Retained content:		
			Work, Energy and Power,		
			Organic Chemistry, Reaction		
		The contexts provide the means	rate, Electro-chemical cells,		
		through which core concepts can be	Chemical equilibrium, ac		
		used to attain Assessment Standards	Dama and I/Drama and		
			Removed/Dropped:		
		Knowledge areas:	ivewion's laws of motion,		
		Mechanics	Impulse and momentum,		
		Waves, sound and normalism	Gravitation, Electric current,		
		Electricity and materials	Acius and Dases, Redox		
		Maller and Malendis			
		Chemical systems			
		onomical systems			

TEACHING AND LEARNING ACTIVITY 1

Demonstrating Action and Reaction (in a Swinging Pendulum)

- 1. Hang six or eight balls (wooden, plastic or brass) on a half-metre rule which is held horizontal by two clamps in retort stands so that the strings are parallel and the centres are at the same height and in line (as in the figure 1)
- 2. Move two balls together and release them to strike the rest head on. What happens to the rest of the stationary balls?

3. Repeat instruction 2 with one ball, and with three balls and even with four balls. Also repeat, this time releasing the balls from greater distances.

Explain the results and compare the distances of displacement before and after collision

TEACHING AND LEARNING ACTIVITY 2

Measuring the Acceleration of free fall using the swinging pendulum

- 1. Tie a bob to a string.
- 2. Hang the string between two pieces of wood or between coins in a clamp on a retort stand.

Fiducial line

- 3. Measure the length of the string from the point of suspension to the middle of the pendulum bob.
- 4. Measure the fiducial line to be used in counting the swings. A swing or oscillation is performed in an interval when the bob is going in any on direction and again in that direction, past the line.
- 5. Allow the bob to swing for a number before starting counting down: 5, 4, 3, 2, 1, 0, when you start your stopwatch. Practice this a few times before starting the experiment.
- 6. Time the pendulum bob for at least 20 oscillations for any length of the pendulum. Repeat for the same length and record them. Calculate the period for one swing.
- 7. Repeat the timing for four other lengths " ℓ " of the pendulum and for each calculate the period T.
- 8. tabulate ℓ , and T^2
- 9. Plot a graph of ℓ against T² and measure the slope on the graph. What is the slope equal to? Obtain g from the slope.

 $T = 2\pi \sqrt{\ell/g}$

EVALUATION TOOL -SESSION 2 - ACTIVITY 4 - PART 1

Use the table below to evaluate the Teaching and learning activity $% \left({{{\left[{{{\rm{T}}_{\rm{T}}} \right]}}} \right)$

CRITERIA	YES/NO	EXPLANATION FOR YOUR ANSWER
Does the activity address a specific LO or an integration of LOs?		
Does the activity address the any AS's in respect to knowledge?		
Does the activity address any AS's in respect to skills?		
Does the activity address any AS's in respect to Values?		
Does the activity indicate assessment clearly?		
Is the assessment indicated relevant?		
Is the LTSM used/indicated relevant?		

EVALUATION TOOL – SESSION 3 – ACTIVITY 3

Use the table below to evaluate the work schedule.

EVALUATION	YES/NO	EXPLANATION SUGGESTIOS FOR	FOR IMPROVI	YOUR EMENT	ANSWER
Does the Work Schedule cover all the Assessment Standards					
Integration: Are the Assessment Standards appropriately linked?					
Are the Assessment Standards covered in sufficient detail and depth?					
Pacing: Is the time allocation across the 40 weeks appropriate?					
Sequencing: Is the content presented in the correct order?					
Are relevant LTSM listed?					

LESSON PLAN TEMPLATE - SESSION 3 – ACTIVITY 4

Subject: PHYSICAL SCIENCES		Grade:		Duration:					
Core Knowledge Area:		Learning Outcomes and Assessment Standards			Critical a	Critical and Development Outcomes			
Theme:									
Context:			I						
Link with previous knowle	edge:		Link with next knowledge:					-	
	Teaching	Teaching Strategy		Evidence of		Assessmen	Assessment Strategy		
Concepts	Description of teaching	and learning activities		Ach	ievement	Method	Tools	frame	
Enrichment:									
Remedial:									
Expanded opportunities:									

ANNUAL ASSESSMENT PLAN – SESSION 4 ACTIVITY 3– PART 1 SUBJECT: Physical Sciences GRADE: _____

YEAR: _____

TERM 1	TERM 2	TERM 3	TERM 4
LO(s) and Topic:	LO(s) and Topic:	LO(s) and Topic:	LO(s) and Topic:
Form:	Form:	Form:	Form:
Date:	Date:	Date:	Date:
Duration:	Duration:	Duration:	Duration:
Tool:	Tool:	Tool:	Tool:
LO(s) and Topic:	LO(s) and Topic:	LO(s) and Topic:	LO(s) and Topic:
Form:	Form:	Form:	Form:
Date:	Date:	Date:	Date:
Duration:	Duration:	Duration:	Duration:
Tool:	Tool:	Tool:	Tool:
LO(s) and Topic:	LO(s) and Topic:	LO(s) and Topic:	LO(s) and Topic:
Form:	Form:	Form:	Form:
Date:	Date:	Date:	Date:
Duration:	Duration:	Duration:	Duration:
Tool:	Tool:	Tool:	Tool: